
AN OVERVIEW OF C, PART 3
CSE 130: Introduction to Programming in C
Stony Brook University

FANCIER OUTPUT FORMATTING

Recall that you can insert a text field width value into a
printf() format specifier:

printf(“%5d”, number);

For floating-point values (floats and doubles), you can also specify
the number of digits to display before/after the decimal point:

printf(“%5.3f”, average);

Constants

A constant is a value that cannot change

Ex. numeric literals (42, 23, 3.14)

Variables can be declared as constants using the keyword const:

const double pi = 3.1415926;

Strings (sequences of characters enclosed in double quotes) are
also constants.

MORE ELABORATE LOOPS

Recall that every loop contains a test

As long as the test is true (has a nonzero value), the loop will
continue to execute

Tests don’t have to be simple Boolean comparisons

They can involve function calls...

RETURN VALUES REVISITED

printf() and scanf() each return an integer value when
they complete

printf() returns the number of characters printed, or a
negative value if an error occurred

scanf() returns the number of successful conversions or the
system-defined end-of-value.

#include <stdio.h>
#include <stdlib.h>

int main(void)
{

int i;
double x, min, max, sum, avg;

if (scanf(“%lf”, &x) != 1)
{

printf(“No data found - bye!\n”);
exit(1);

}

min = max = sum = avg = x;

printf(“%5s%9s%9s%9s%12s%12s\n”,
“Count”, “Item”, “Min”, “Max”, “Sum”, “Average”);

printf(“%5s%9s%9s%9s%12s%12s\n\n”,
“-----”, “----”, “---”, “---”, “---”, “-------”);

printf(“%5d%9.1f%9.1f%9.1f%12.3f%12.3f\n”,
1, x, min, max, sum, avg);

for (i = 2; scanf(“%lf”, &x) == 1; i++)
{

if (x < min)
min = x;

else if (x > max)
max = x;

sum += x;
avg = sum / i;

printf(“%5d%9.1f%9.1f%9.1f%12.3f%12.3f\n”,
i, x, min, max, sum, avg);

}

return 0;
} /* end of main() */

FUNCTIONS

FUNCTIONS

A function is a small block of code that can be called from
another point in a program

Functions enable reuse, and can be used to abstract out common
tasks

Ex. computing the factorial of a number

Function results can be changed by supplying different input
values

CALLING A FUNCTION

To call a function, write its name, followed by a pair of
parentheses, followed by a semicolon

Ex. rand();

If the function takes any input, those values go inside the
parentheses

Ex. printf(“%d”, value);

FUNCTION ARGUMENTS

Arguments are pieces of data that are passed into a function

Different input can produce different results

Arguments can be manipulated, like variables

Arguments are normally passed as copies — changes are not
sent back when the function returns

RETURN VALUES

Some functions pass a value back to the place where they were called

Ex. factorial() sends back an answer

The return value effectively replaces the function call in the original
expression

int answer = factorial(3);

becomes

int answer = 6;

RETURN VALUES

If a function returns a value, it must contain a return statement:

return value ;

The return value must match the return type in the function
header!

A function may return any value of the specified type

FUNCTION EXECUTION

Only one function can be active at a time

When a function is called, the calling function is put on hold while
the called function executes.

When the called function completes (returns), control returns to the
calling function

Function calls can be nested (e.g., A calls B, which calls C — when C
completes, B resumes execution, then returns control to A when it’s
done)

DEFINING A FUNCTION

A function definition consists of a function header and a function
body

The function header specifies the return type, name, and
arguments list

The function body is a brace-enclosed set of 0 or more program
statements

GENERAL FORM

return_type function_name (arguments)

{

function body

}

NOTES ON DEFINING FUNCTIONS

Like variables, functions must be defined before they can be used

Some programming conventions state that main() should
come before any other functions in a program

How can main() use the function if it hasn’t been defined yet?

Answer: Precede main() with one or more function
prototypes

FUNCTION PROTOTYPES

A function prototype tells the compiler:

the number and types of arguments the function takes in

the type of value that the function returns

General form:

return-type function-name (parameter type list) ;

e.g., double pow (double x, double y);

EXAMPLE 1

void printDashedLine ()

{

printf(“--------------------”);

}

EXAMPLE 2
void clearScreen ()

{

int i;

for (i = 0; i < 24; i++)

{

printf(“\n”);

}

}

EXAMPLE 3
void printSomeStars (int n)

{

int i;

for (i = 0;i < n;i++)

{

printf(“*”);

}

printf(“\n”);

}

EXAMPLE 4

void print1ToN (int n)

{

int i;

for (i = 1; i <= n; i++)

printf(“%d\n”, i);

}

EXAMPLE 5

int getYear ()

{

int value;

printf(“Enter the year: ”);

scanf(“ %d”, &value);

return value;

}

EXAMPLE 6

int average (int a, int b, int c)

{

int sum = a + b + c;

return sum/3;

}

EXAMPLE 7

int multiply (int first, int second)

{

return (first * second);

}

EXAMPLE 8
int factorial (int value)

{

int fac;

for (fac = 1; value > 1; value--)

fac = fac * value;

return fac;

}

/* value is unchanged in the calling ftn */

VARIABLE SCOPE

Scope refers to the area of a program for which a variable is
defined

Scope is restricted to the smallest set of curly braces around the
variable

Ex. the function in which a variable is defined

SCOPE ILLUSTRATION
int myFunction ()

{

...

int x;

... /* x is in scope here */

}

/* x is out of scope here */

GLOBAL VARIABLES

A global variable is declared outside of any function

Global variables are accessible from anywhere in a program

Global variables are used to share data

Constants are usually declared as globals

GLOBAL VARIABLES

const float PI = 3.1415926;

int main (void)

{

float area = PI * 2 * 2;

...

}

SCOPE AND NAMING

Several variables can have the same name, as long as they are in
different scopes

The most recently-declared variable takes precedence

We say that it shadows the other variable

SAME NAMES

int x = 5; /* this x is global */

void foo ()

{

int x = 10; /* this x shadows the global one */

printf(“%d”, x); /* prints 10 */

}

